Collaborating for Successful Innovation

sgl carbon
Due to their special material properties and futuristic aesthetics, carbon fibers are increasingly being used by interior designers. One example of the innovative use of carbon is the Pure Noir Table by Dutch manufacturer Studio Wynd. “This table series makes the incomparable lightness and porous surface structure of the carbon fibers visually and haptically perceptible,” designer Javid Jooshesh notes, describing his creation. The piece of furniture weighs only seven kilograms. It is wound from a single, 1.2-kilometer-long SIGRAFIL® carbon fiber braid—without any frames or additional components. In addition to its ultra-light weight, the table is distinguished by its innovative aesthetics and efficient material usage thanks to carbon fiber’s excellent properties. The designer has achieved a high degree of stability and beauty with minimal use of materials: pure carbon.

— www.studiowynd.com
Curiosity, open-mindedness, respect: real partnerships grow from these ingredients. The type of partnerships that initiate innovation and deepen trust. Partnerships that bring together everyone involved and create joint solutions. In other words, partnerships that deserve to be called just that.

The new SGLCarbon is advancing just these sorts of partnerships. It cooperates with customers and partners, with scientists and among internal experts. The results are sophisticated, smart solutions—implemented on the basis of composites and graphite, designed from the perspective of our customers and partners.

In this issue of the magazine, we are taking you along to some of the pioneers of this new approach. To Andreas Wöginger and his colleagues, who offer application-oriented lightweight expertise, to Calin Wurm, who is setting up SGL Carbon’s new battery laboratory in Meitingen, Germany, or to Robert Hütter and Herwig Fischer, who serially produce finished composite components in Austria, for example leaf springs for Volvo.

It is a journey on which you will learn why intensive cooperation is particularly worthwhile for B2B companies, when it works and which everyday hurdles can arise. Come join us on this trip.

28
Layers that Power the World
Lithium-ion batteries are more in demand than ever. This is how they work.

32
Here to Stay
Good training is a tradition at SGL Carbon. Five apprentices tell us about it.

36
True All-Rounder
Hydrochloric acid can really do a lot. SGL Carbon’s graphite helps to make.

24
Master of the Poles
Calin Wurm has been fascinated by batteries for a very long time. Now he is setting up a new research laboratory for SGL Carbon in Meitingen, Germany.

06
Think Together
Why cooperation produces particularly successful innovations—and how SGL Carbon is implementing this approach.

Runs Like Clockwork
In Austria, SGL Carbon mass-produces complex components from fiber-reinforced plastics for serial applications in automotive. An on-site visit.

06
Layers that Power the World
Lithium-ion batteries are more in demand than ever. This is how they work.

28
Here to Stay
Good training is a tradition at SGL Carbon. Five apprentices tell us about it.

32
True All-Rounder
Hydrochloric acid can really do a lot. SGL Carbon’s graphite helps to make.
SGL Carbon has been supplying its partners with high-tech materials for a long time. Now the company wants to bring its cooperations to the next level and involve customers even more systematically in the development of new innovations. Join us on an expedition to a few of today’s and tomorrow’s pioneers of this new strategic approach.
When Andreas Wöginger talks about his work, he speaks a long time about trust, openness and respect. About how important it is to listen to customers, to understand their problems from their point of view and then to find solutions by working together. "Customers are learning how to work with these relatively new composite materials," says the mechanical engineer. Behind him, a robotic arm is placing a carbon fiber mat into a machine press.

Wöginger is responsible for technology development within the business unit Composites - Fibers & Materials (CFM) at SGL Carbon. In his 2,000-square-meter lab, he and his colleagues are testing the newest production methods. SGL offers services along all steps of the value chain, from design services to development and implementation of the finished component. Sometimes customers come without any prior knowledge in the field of composites and they work together with the SGL team to develop a completely new component. Sometimes it is about supporting a more experienced customer to advance development of lightweight components for mass production. Yet regardless of whether it’s a new design or an adaptation of a current one: ‘Cooperation between customers and SGL is becoming increasingly important,’ explains Christoph Ebel, who is a member of Wöginger’s team and leads SGL’s in-house Lightweight and Application Center (LAC).

Cooperation is Crucial

What is true for lightweight construction can also be applied to all industries of SGL Carbon. From the battery sector to the LED and semiconductor industries to the chemical industry: cooperation with customers is more important than ever before. SGL Carbon has made the credo of partnerships the focus of its new corporate strategy and corporate culture. “In addition to continue to manufacture high-quality and functional materials, we will also develop smart solutions together with our customers,” says SGL Carbon CEO Jürgen Köhler.

There are good reasons for the strategic realignment. All over the world, manufacturers, customers and their suppliers are working even more closely together to develop new products, applications and solutions. The days when engineers and designers spent years tinkering in laboratories and studios and then presenting customers with a finished product are over. That package and mail logistics company DHL, for example, has been bringing its customers and partners together in innovation centers for some time now. This led, for example, to the idea of the Parcelcopter—an autonomous flying package-delivery drone. Software companies such as SAP and the food-products multinational Danone are using platforms to involve their customers in developing their products.

“Cooperating with external partners is crucial for the success of innovative projects,” says Krsto Pandza, an innovation researcher at Leeds University Business School. He’s been dealing with this topic for years (see the interview on p. 12). To date, 220 companies in particular have relied on close cooperation with customers and partners since the hurdles to cooperation are lower and the successes more quickly apparent. In the B2B sector, in contrast, many companies still remain in traditional contractual agreements, which have proved their worth but aren’t terribly likely to promote innovation.

Marie Taillard and Jerome Couturier of the ESCP Europe Business School consider this a mistake. The advantages can be just as tempting in the B2B sector; they argue in an analysis. “But they require the foresight to see beyond traditional corporate boundaries, and the audacity to share with those you naturally want to keep at a distance.”

A Tradition of Close Collaboration

SGL Carbon has a tradition of cooperating with partners. For instance, the Graphite Materials & Systems (GMS) division has long relied on Technical Sales Managers. They remain in close contact with customers and develop customized solutions based on the customers’ requirements. “This is how we combine our strengths with our customers’ needs,” says GMS Senior Vice President of Marketing and Sales Christoph Henseler. In this way, Henseler and his team have learned, for example, that a mixture of modular solutions and corresponding adaptations are optimal for their customers in the area of heat exchangers, while in the semiconductor industry or the battery segment almost every customer has individual requirements. Henseler’s motto: “We have two ears and one mouth—and that’s how we should behave.”

For SGL’s composites division, the topic of partnership is also nothing new. Cooperations have often even taken the form of joint ventures. SGL Carbon’s long-standing joint venture with BMW has really left its mark in this respect. In joint pioneering work, the two partners realized the BMW i3—the first complete mass-producible car passenger compartment made of carbon fiber-reinforced plastics—and advanced the material’s utilization for other BMW models. They also established the two facilities in Moses Lake, Washington (US) and Wackersdorf, Germany, being the world’s most state-of-the-art carbon fiber production and a highly innovative fiber processing facility.

The collaborative approach has grown increasingly stronger throughout SGL Carbon. The result: numerous projects are already proving that cooperation is worthwhile wherever it occurs. An expedition in five chapters:
SGL Carbon serially produces the leaf springs in Austria.

Volvo Cars & SGL Carbon: From Scratch Together

Per year, 500,000 leaf springs made of glass fiber-reinforced composite come off the fully automated assembly lines in the SGL facility in Ort, Austria. They’ll end up being installed in the rear axle of all Volvo 60 and 90 models. The serial production of this high-tech component demonstrates what can result when two partners work closely together: a process that is 65 percent lighter than conventional steel leaf springs.

Erik Johansson, Senior Design Engineer at Volvo Cars, is instrumental in the design, implementation and development of the Volvo Scalable Product Architecture (SPA) platform and its leaf spring project. He can vividly recall how the cooperation with SGL Carbon and Benteler, the joint venture partner at the time, started six years ago. “We always wanted to design the leaf spring for our new SPA platform based on composite material,” Johansson explains, “and after the request for proposals, we quickly decided to go with SGL.” Once the contract was signed, the joint cooperation started immediately: weekly telephone conferences, reciprocal visits between Gothenburg (Sweden), Ried (Austria) and, always new meetings to plan the next steps.

“Once the contract was signed, the joint cooperation started immediately: weekly telephone conferences, reciprocal visits between Gothenburg (Sweden), Ried (Austria) and always new meetings to plan the next steps.”

“Not only that,” Johansson adds, “but the new leaf spring gives us a lot of flexibility because we can use the same variant in many models, meaning we don’t have to redesign it every time.”

Together despite the project’s many hurdles. “The lines of communication were open and clear from the very beginning, and everyone was open to ideas and solutions from the other side,” he says. One of the major contributing factors to the success of this project was SGL Carbon’s expertise in production processes, not to mention in research and development.

The new leaf spring is helping Volvo Cars build lighter and more compact rear axles. “Not only that,” Johansson adds, “but the new leaf spring gives us a lot of flexibility because we can use the same variant in many models, meaning we don’t have to redesign it every time.”

Johansson, Hütter and their teams are already working on the next generation of the leaf spring and the associated manufacturing facilities.

Pierburg & SGL Carbon: Cleared All the Hurdles Together

A customer inquiry, two components and a couple of technical drawings—these marked the start of the cooperation between Pierburg, owned by Rheinmetall Automotive AG, and SGL Carbon. Eight years later it has resulted in a true partnership. Working continuously together, the two companies have advanced development of the EVP 40, a vacuum pump to increase braking power—and both companies have benefited from this long-term process.

“The crucial point for such a development is that we must bring together all the capabilities, from component design, prototype development and validation to series process design. In this case, we were able to demonstrate this very well,” says Robert Hütter, Director Sales and Program Management Automotive for SGL Carbon in Austria. At the same time, it wasn’t easy to adapt Volvo Cars’ original design to serial production processes.

“There were long, always constructive, discussions about it,” Hütter recalls. “But, in the end, together we found a way where we could fulfill all requirements from Volvo Cars and are able to produce in a stable high-volume process.”

Johansson was also impressed by how the partners were able to pull together despite the project’s many hurdles. “The lines of communication were open and clear from the very beginning, and everyone was open to ideas and solutions from the other side,” he says. One of the major contributing factors to the success of this project was SGL Carbon’s expertise in production processes, not to mention in research and development.

The new leaf spring is helping Volvo Cars build lighter and more compact rear axles. “Not only that,” Johansson adds, “but the new leaf spring gives us a lot of flexibility because we can use the same variant in many models, meaning we don’t have to redesign it every time.”

Johansson, Hütter and their teams are already working on the next generation of the leaf spring and the associated manufacturing facilities.

“Not only that,” Johansson adds, “but the new leaf spring gives us a lot of flexibility because we can use the same variant in many models, meaning we don’t have to redesign it every time.”

Johansson, Hütter and their teams are already working on the next generation of the leaf spring and the associated manufacturing facilities.

“Not only that,” Johansson adds, “but the new leaf spring gives us a lot of flexibility because we can use the same variant in many models, meaning we don’t have to redesign it every time.”

The crucial point for such a development is that we must bring together all the capabilities, from component design, prototype development and validation to series process design. In this case, we were able to demonstrate this very well,” says Robert Hütter, Director Sales and Program Management Automotive for SGL Carbon in Austria. At the same time, it wasn’t easy to adapt Volvo Cars’ original design to serial production processes.

“In the end, though, it was precisely at these points that it became apparent that we stood together, even during difficult phases,” Woizenko says.

Today all the effort continues to pay off. “The SGL components have always been a safe bet for us, although they are the two most complicated components in the pump,” says Nabil Al-Hasan at Pierburg. “You can see how helpful it was that SGL Carbon had been working on mass production for such a very long time.” For Al-Hasan, the good experiences are the foundation for further cooperation. “We are currently in the process of developing larger pumps—and we will continue to rely on SGL Carbon for them.”
Professor Pandza, what are the main challenges when it comes to innovation? Companies are designed to be efficient. Innovation is thus sometimes perceived as an obstacle to well-established processes. Managers prefer to rely on past experience; they tend to shy away from uncertainty, ambiguity and complexity.

Is that a general attitude? Yes, regardless of size or industry—innovation does not come naturally to any company. Manufacturing companies are generally really good at incremental improvements in products and processes, but they are often less well prepared for more radical changes. It’s tough for them to break with their past experience. With innovations such as introducing service-based business models or leading a digital transformation, they are confronted with major challenges.

What would be the best approach for a successful innovation strategy? This is clearly management’s foremost job. They must decide what innovation means for the organization and it is their job to prevent it from becoming a hollow phrase. While it is necessary to protect the company’s core business, management needs to explore radical technologies and unfamiliar markets. They are well advised to distinguish between innovations that exploit existing businesses and those that need to explore radical technologies. Sometimes it is used as a label for crowd-sourcing initiatives. The notion of Open Innovation is understood differently by different companies. For some it’s a synonym for any kind of collaboration, others use it for the exploration of emerging technologies. Sometimes it is used as a label for crowd-sourcing initiatives.

So it depends on the specific case? Absolutely. The only certainty is that collaboration is an imperative. All companies that work together with partners on innovation projects reap the benefits—as long as they use their own resources as well and have thought about strategy. What you end up calling this kind of cooperation doesn’t really matter.

Can you describe the role of cooperation in this innovation process? Cooperation is the key. No single organization manages to combine all of the smart people, all the relevant knowledge and all the technologies under one roof. The more uncertain the technology and the less that is known about the new customers, the greater the importance of collaborating with external partners. The message is: don’t innovate alone, share risks, pool resources. Collaboration with external partners is crucial for innovation and it is a major managerial challenge.

And it works just like that? Of course it is enormously challenging. The more they collaborate, the more companies need to set up processes and structures for such collaborations, for instance dedicated innovation managers focusing exclusively on coordination.

Presumably each new partner is different? Cultural differences between cooperation partners can be huge. Collaborating with a supplier is definitely not the same as collaborating with a university, a start-up or an industrial partner from a different sector.

Some companies use the Open Innovation approach to make innovation projects completely public. Is this just hype or is it a sensible approach? It always depends. The notion of Open Innovation is understood differently by different companies. For some it’s a synonym for any kind of collaboration, others use it for the exploration of emerging technologies. Sometimes it is used as a label for crowd-sourcing initiatives.

Finally, a personal question: You started your career with a Slovenian company manufacturing safe cabinets and vault rooms. What did you learn there regarding innovation management? There are three major experiences I learned from in my career. First, innovation challenges are not the same as the challenges of running efficient operations. Second, innovation is not a single event triggered by a heroic inventor, but rather a collaborative process. And third, finding a technological solution is often the least problem with innovation.
culture. We put together a mix of people from both organizations for the teams. And we provided the joint venture colleagues access to both companies’ research and development. This convinced the engineers on both sides. In addition, in recent years the joint venture became financially independent, as Markus Müller, SGL’s representative in BSCCB’s management team and as CFO responsible for the financials of the JV, states. “All of these factors shaped our most important resource, namely trust”, explains Furio Rozza, who came from the outside seven years ago to join BSCCB’s management as an independent general manager. Today, the brake discs are installed in the top models of almost all car manufacturers, from Bentley, Bugatti, Lamborghini, over to Audi, Porsche and Ferrari as well as McLaren. Production is running at full speed in the two BSCCB facilities in Meitingen, Germany, and Stezzano, Italy, and is being expanding step by step. As Vavassori, Rozza and Müller proudly report, “Our joint product still is the successful partnership. The key to this has been and still is the successful partnership.

Science & SGL Carbon: Driving Lightweight Application Research

Before starting as the head of the LAC at SGL Carbon, Christoph Ebel spent almost eight years at the Technical University of Munich at the Chair of Carbon Composites, where he researched methods for processing carbon. The chair was co-founded by SGL and the company continues to support it to this day. Yet Ebel’s move to SGL Carbon is not the only evidence of the close links between the sciences and SGL. In 2017 the company entered into close cooperation with scientific institutes on a variety of topics. One example: the LAC-affiliated Fiber Placement Center (FPC), which SGL Carbon and the Fraunhofer Research Institute for Casting, Composite and Processing Technology (IGCV) founded in 2009. The FPC headquarter are at the SGL facility in Meitingen, Germany. Rebecca Schuster from Central Innovation and Michael Mändle from the business unit GPM are inspecting the new Advanced Modulus (AM) carbon fiber.

The Fiber Placement production process refers to the automated and material-efficient laying and cutting of fibers. With the center, both partners aim to incorporate the into more high-volume applications across industries. “In this way, we can offer the technology, which originated from the aerospace industry, to other sectors at an industrial level,” explains Hannah Paulus, Head of the FPC. “While at the same time continuing to further develop the technology.” Preparations are already underway at the new center for realizing projects for secondary and primary structural components for aircraft and automotive manufacturers worldwide. This allows scientists at the IGCV to test their research results directly in practice.

Inside SGL Carbon: Partnerships as an Example

Cooperation with external partners is important, but it is of little value if in-house cooperation isn’t going well. “Convince through performance,” “be open-minded” and “create momentum” are the central values of our corporate culture,” says SGL Carbon Group Vice President Human Resources Birgit Reiter. The new employer brand, which is currently in development, will also be aligned to these values. “In the past we suffered too much from a silo mentality,” CEO Köhler says. “Only by thinking and acting beyond internal borders can we support our customers as a reliable partner.”

Interdisciplinary Cooperation

The in-house Digital Customer Experience initiative illustrates how this interdisciplinary cooperation works. The project’s goal is to exploit the potential of digitization in the sales division across the individual business units. An interdisciplinary team was formed to implement the project: three experts from GPM, three specialists from GMS and two IT specialists. Additional experts are added depending on the project status. The idea is working. “The spirit of cooperation is great,” says Florian Neumann, who coordinated the project across the board in the first phase. In five months, the team identified four customer groups, each with different needs and a multitude of individual digitization measures.
In a Nutshell

News about the company, trends, products and partnerships

State-of-the-Art Logistics Center

For the new SGL, with its focus on customers in the innovative and fast-growing areas of mobility, energy and digitization, one of the success factors in a global world is state-of-the-art, efficient and effective logistics. Fast turnaround times—whether receiving or shipping goods—are crucial. This also holds true for targeted in-company distribution to various production facilities. Modern logistics nowadays includes up-to-date and comprehensive quality inspections for incoming goods, which is an aspect and standard that customers demand, particularly in the automotive industry. This is why SGL Carbon is investing 8 million euros in a central, state-of-the-art logistics center at its largest site in Meitingen, Germany.

A logistics warehouse with a footprint of 6,000 square meters with four adjustable dock leviers and the possibility of ground-level loading and unloading will be completed by July 2019. The transshipment of goods between the production facilities and the new logistics center is part of an ongoing follow-up project based on a digital transport control system. New scanning technologies are an important building block for this. Aside from SGL Carbon, Bremsbo SGL Carbon Ceramic Brakes (BSCCB) will be one of the main users.

Capital Markets Day

For the first time in ten years, SGL Carbon hosted a Capital Markets Day for analysts and investors with a focus on market trends and material solutions. At the all-day informational event held in Meitingen, Germany, SGL presented updates on the company’s strategic realignment and drivers and trends in the individual market segments as well as exhibits demonstrating its high-level expertise in materials, solutions and applications across the entire value chain. A total of around 35 participants came from London, Frankfurt and other financial centers. “It’s extremely important and valuable for SGL to present and explain its new focus on the megatrends mobility, energy and digitization, the topics that will determine the future, not to mention our complex world of materials,” says Dr. Michael Magnus, Chief Financial Officer of SGL Carbon. “This is naturally best highlighted on site, where questions can be answered directly.”

20 years in China

China is today the second largest economy in the world and meanwhile has a pioneering role for many different industries. It is also an important market for SGL Carbon, specifically in the automotive, LED, semiconductor and solar sectors. In China, SGL Carbon, which celebrated its twentieth anniversary in the country in October 2018, is now employing around 400 employees. “We have started in 1998 in Shanghai with one manager, one assistant and one driver,” says Nancy Chen, Head of the SGL activities in China. “Today we are steering our entire activities in Asia from here.”

JEC World 2019

Collaboration is the be-all and end-all for developing successful innovations. Trade shows are also a good platform for this, which is why SGL Carbon will—like it does every year—will be represented at the world’s largest trade show for composite materials, the JEC World, from March 12 to 14, 2019 in Paris. This year’s trade-show appearance will focus on innovative composite solutions. Another important starting point for discussions will be the optimized use of fiber composite components.

SGL Carbon will also be presenting its entire value chain: following the integration of the former joint venture sites in Ried, Ort (Austria) and Wackersdorf (Germany), the company’s value chain now ranges from the manufacture of carbon fibers and semi-finished products and on to serial production of finished components. In tandem with SGL’s in-house Lightweight and Application Center (LAC), the company offers materials from a single source as well as comprehensive consulting and solutions around composite materials. This positioning will also be the focus of an evening get-together at the SGL stand. You will be able to find SGL Carbon at the JEC World in hall 6, stand 25.

Federal President of Germany visits SGL Carbon

SGL Carbon is one of Germany’s best companies for apprenticeship. German Federal President Frank-Walter Steinmeier was also convinced of this during a visit to the SGL production site in Bonn. After an introduction to the company by Jürgen Köhler, Steinmeier took the time for some personal contact with employees and apprentices. “It was a very special situation, and the entire facility had prepared for the visit,” said Andreas Heuser, an industrial management assistant who has completed his apprenticeship. “The president also asked personal questions,” Heuser added, impressed by President Steinmeier’s profound interest. Human Resources Manager Kiya Bazlar said, “I was pleased that Mr. Steinmeier had wished to be informed about the topic of training.” Following this, President Steinmeier, his wife and Bonn’s Lord Mayor Ashok-Alexander Sridharan also met with representatives from the Works Council.

JEC World 2019

Collaboration is the be-all and end-all for developing successful innovations. Trade shows are also a good platform for this, which is why SGL Carbon will—like it does every year—will be represented at the world’s largest trade show for composite materials, the JEC World, from March 12 to 14, 2019 in Paris. This year’s trade-show appearance will focus on innovative composite solutions. Another important starting point for discussions will be the optimized use of fiber composite components.

SGL Carbon will also be presenting its entire value chain: following the integration of the former joint venture sites in Ried, Ort (Austria) and Wackersdorf (Germany), the company’s value chain now ranges from the manufacture of carbon fibers and semi-finished products and on to serial production of finished components. In tandem with SGL’s in-house Lightweight and Application Center (LAC), the company offers materials from a single source as well as comprehensive consulting and solutions around composite materials. This positioning will also be the focus of an evening get-together at the SGL stand. You will be able to find SGL Carbon at the JEC World in hall 6, stand 25.

Federal President of Germany visits SGL Carbon

SGL Carbon is one of Germany’s best companies for apprenticeship. German Federal President Frank-Walter Steinmeier was also convinced of this during a visit to the SGL production site in Bonn. After an introduction to the company by Jürgen Köhler, Steinmeier took the time for some personal contact with employees and apprentices. “It was a very special situation, and the entire facility had prepared for the visit,” said Andreas Heuser, an industrial management assistant who has completed his apprenticeship. “The president also asked personal questions,” Heuser added, impressed by President Steinmeier’s profound interest. Human Resources Manager Kiya Bazlar said, “I was pleased that Mr. Steinmeier had wished to be informed about the topic of training.” Following this, President Steinmeier, his wife and Bonn’s Lord Mayor Ashok-Alexander Sridharan also met with representatives from the Works Council.
Where skis were once handcrafted, SGL Carbon now works in cooperation with its customers to produce extremely lightweight components made of fiber-reinforced plastics for the automotive industry. At the Austrian facilities in Ried and Ort im Innkreis, everything is fast, efficient—and increasingly mass produced.
H

erwig Fischer stretches both hands into the
air, like a conductor, pointing to the machines
and employees—first with his left hand, then
with his right. In the large hall in front of him, carbon
fibers are stored on large spools, and huge press ma-
chines form automotive components from what are
known as preforms. Although Fischer, head of the two
sites, has often taken visitors on tours of SGL’s Austri-
an sites in Red and Ort im Innkreis before, you can still
sense his enthusiasm. “What we are doing here with
carbon and other fibers is a bit of the future for car
bodywork—regardless of whether the vehicle is pow-
ered by an electric motor or a combustion engine,” he
says. Fischer has been hitting all the right notes with
his orchestra, so to speak, for some time now.

The SGL facilities are located in an idyllic set-
ting around sixty kilometers northeast of Salzburg.
Here, SGL Carbon is advancing series production in
lightweight construction with fiber-reinforced syn-
thetics. The composite production facility in Red
arose from a manufacturing site belonging to the
sporting goods producer Fischer—the company had
already been working on lightweight components for
the automotive industry for several years around the
turn of the millennium and today still manufactures
high-performance skins in the immediate vicinity.

In 2009, SGL Carbon and the automotive sup-
plier Benteler purchased part of the ski manufacturer’s
facility in Red im Innkreis district. In the Benteler-SGL
joint venture, the companies subsequently estab-
lished a center of excellence for lightweight appli-
cations. The unique facilities and projects became
the cornerstone for today’s high-volume production,
which has helped make SGL one of the world’s mar-
ket leaders.

From Small Batches to Large-Scale Production

Every day, the two plants under SGL management in
Red and Ort mass-produce a large number of compo-

tents, including spoilers for the Porsche 911 GT3, rear
panels for the Audi R8, component sets for the BMW
3 and leaf springs for various Volvo models. “These
sorts of things really didn’t exist until just a few years
ago,” Fischer says. “It’s still a very young industry.”

For SGL Carbon, the Austrian facilities are an
important component in its new strategic alignment.
About a year ago, the company acquired the shares
from its joint venture partner Benteler, closing the fi-
nal gap in the value chain for composite components.
The precursor, the raw material for producing carbon
fibers, is made in Portugal, while the fibers them-

selves are manufactured in the United States and in
Scotland. Additional processing is carried out by em-

ployees at various locations in Germany and the fin-
ished components are produced in Austria.

Component production is part of SGL’s core
business. “Some customers are satisfied enough with

the guidance they receive from the colleagues in the
Lightweight and Application Center in Meitingen, Ger-
man
y and also with the material,” Fischer explains,
“and decide to take on the final production steps
themselves.” Others, in contrast, would like the entire
component from SGL Carbon. “That’s where we come
in play,” he adds.

Depending on the specific needs, manual pro-
duction is still a very suitable method for produc-
tion even today. The production site in Red smells like
a mélange of liquid synthetics. Many small batches
are produced here and most of the steps are complet-
ed by hand. Every day brings more knowledge about production processes, knowledge that often forms
the basis for mass production on the assembly line.
“In manual production we can try out material com-
binations and geometries and use this experience to

improve automation,” says Team Leader Production
Gerhard Traunwieser, who supervises part of the pro-
duction in Red. “A mixture of manual and mechani-

cal production is a good idea, particularly for complex
components.”

This also holds true for the spoiler on the
Porsche GT3. Production begins in Red as soon as
the fine fiber mats are delivered. A so-called cutter
trims them to the desired size with an ultrasonic knife
while the material is still dry before being impregnated
with synthetic resin. The trimmed mat pieces are then
molded. After these preforms have been produced,
the component starts to take shape. Carbon fibers are
perfect for producing geometrically complex compo-

nents with a particularly efficient use of materials.
The fibers are placed in the component in exactly the
quantity and orientation required for the GT3 spoiler
to attain the curves of the design yet simultaneously
remain as lightweight as possible.

Now an employee places the preform into the
machine. The press closes and creates a vacuum in
its interior, and then precise quantities of synthetic
resin and hardener are injected inside. Finally, the part
hardens. This method is used to produce the spoiler’s
outer shell, inner shell, inner shell cover, the two air
scoops and the wings. During the process, a stable
core of liquid wax is cast as a support for the specific
component. This is later melted out, cre-
at ing a hollow structure. “This makes the part even
lighter,” Traunwieser explains.

“In a last step, the individual components are
pretreated, glued together to form the entire spoiler,
and then undergo a detailed inspection,” Traunwieser
adds. He and Fischer point out a compartment that
is lighted by 21 neon lights, which is where the final
inpection takes place.

Fischer, a native to the region, has been man-
aging operations in Red and Ort since early 2018. He
studied logistics management and served in
various positions during the development of

Every day, SGL Carbon pro-
duces numerous
leaf springs and
other components in
Austria.
The locations, from the joint venture to the acquisition by SGL in 2009. He is driven about his work—as a well-organized, technophile businessman, he enjoys being the connective link between employees, specialist topics and mass production.

These character traits are important, given the continual transformation of the plants. While a lot of production work is still completed by hand in Ried, the manufacturing facility in Ort im Innkreis—with a footprint of ten thousand square meters, about as large as a Manhattan city block—is mostly fully automatic. The manufacturing systems were set up from scratch back in 2012 and include around one hundred different, often directly interlocking, individual automated processes.

In order to keep track of this complexity, Fischer and his most important employees meet in the control room every day at nine in the morning. Outside the room the machines are springing back and forth, humming and buzzing, while inside the walls are decorated with diagrams and evaluations from the previous shift. “We monitor and control the production in here,” Fischer explains. How high was the previous shift’s output? Were there any incidents? What about the quality of the components? “All this information comes together here and it is up to us to draw conclusions and decide what steps may need to be taken.”

The Best Time is Just Beginning

In the factory, the robots work completely autonomously, grabbing, sorting and rotating components along the production line. This is how the leaf springs for Volvo are produced. The component demonstrates how SGL’s focus and its facilities have evolved. “We’re no longer just supplying customers with material, but are also offering solutions and project support from a single source,” Robert Hütter says. He and his team are responsible for Volvo in the SGL Carbon sales team (see p. 10). He continues: “This approach has for instance enabled us to build half a million leaf springs a year for Volvo.” Hütter, who was also born in Austria, has helped build and expand the production facilities here and the manufacturing for Volvo over the years. He often travels around the world to work with SGL customers to find exactly the solutions they want.

The Volvo leaf springs roll off the assembly line in two rows. Just like in Ried, the preforms are first trimmed, placed in the press molds, mixed with resin under pressure, hardened and then milled to completion. But everything happens automatically in Ort. “A finished leaf spring comes off the end of the assembly line every few moments,” Hütter says. “Even quality control and the documentation via two-dimensional code labels is automated.”

This high degree of automation is also winning over more and more customers. Additional development projects for machine-based serial production in the automotive sector have long been underway—including broadening the expertise in leaf springs to an alternative manufacturing technology and an additional mass-production project with another major automobile manufacturer. According to what Fischer says, they will soon be producing ultra-light and extremely sturdy components for use in other fields such as the aerospace industry.

The transformation from a ski manufactory to a high-tech production center and pioneer facility for mass-produced lightweight applications could still go much, much further. The best time is just beginning for Fischer, Hütter and the 250 employees in Ried and Ort.
Master of the Poles

Varta, SGL, Bosch—and back to SGL: for years now, Calin Wurm’s profession has been coaxing lithium-ion batteries into giving up their secrets. In Meitingen, Germany, he’s now helping to set up the new SGL Carbon battery application laboratory with which the company plans to offer its battery customers even more comprehensive services.

The graphite mixture, viscous as honey, drips out of the beaker. “This is the slurry,” Dr. Calin Wurm says. Pipettes, tongs and jars with chemical formulas surround him in the lab. Wurm, the director of the research laboratory, holds the beaker with the slurry in one hand. It’s made of graphite powder and an ultrapure putty-like solution. He carefully pours the slurry into the coating equipment. The system spreads it out to wafer-thinness onto a copper foil, sends it all through the dryer, and at the end a finished anode foil emerges.

Wurm is pleased. What he just accomplished by hand is something that happens on a very large scale at battery manufacturers all around the world. “We want to work as closely as possible with our customers,” Wurm explains. That’s why he is currently reconstructing the individual work steps of industrial battery production in SGL’s new and expanded battery laboratory in Meitingen, Germany. This isn’t so he can produce the batteries himself, but rather to gather knowledge to support major manufacturers as a development partner, technology expert and materials specialist.

In the battery and energy-storage business, this combination is becoming more and more important. While raw materials, components and end products are standardized down to the last detail in many other industries, lithium-ion batteries and their components differ enormously from one another. Composition, further processing, size: almost everything varies depending on the field of application and the objective. At the same time, the demand for lithium-ion batteries is rapidly increasing. Highly efficient and safe batteries are required almost everywhere—whether in electric cars, e-bikes, smartphones or laptops. It is estimated that the demand for lithium-ion batteries will increase by up to 30 percent annually by 2025.

Power cells made of lithium metal oxides, electrolytes, separators and graphite are becoming increasingly indispensable, especially in electromobility. According to a study by the International Energy Agency (IEA), 130 million new electric cars could be registered in 2030—almost all of which will contain lithium-ion batteries. The rapid demand is already leading to shortages of raw materials, strengthening the market power of the source countries. The market is divided into about half natural graphite and half synthetic graphite. Natural graphite mainly comes from China and is less flexible, technically speaking. “You have much more freedom with synthetic graphite,” Wurm says. Furthermore, it can be customized to the respective battery to a higher degree. This advantage is particularly important in battery manufacturing and is an advantage from which SGL Carbon, as one of the market leaders in the field of synthetic graphite, benefits.

“All of a battery’s parts are interconnected,” Wurm says in his lab. It’s what makes them so complex. The company that wants to offer the best materials for the best battery must therefore understand precisely how these interconnections work. That’s the goal that Wurm has set for himself in Meitingen—and why he returned to SGL Carbon to accomplish it. As he walks through the lab, he talks about how, as a young student in Bucharest, he discovered his fascination for batteries, then moved from his birthplace Romania to Paris to complete his doctoral thesis, then to Amiens, France, then in 2004 went to Ellwangen, Germany, to develop batteries for Varta, and finally joined SGL for the first time in 2008.

Even back then, Wurm was one of the leading experts on graphite anodes on the market. After completing his doctoral dissertation, he worked...
My heart once again chose the battery.

Calin Wurm
Head of the battery application laboratory at SGL Carbon in Meitingen and Director Technical Marketing Product Segment Battery Solutions.

In what’s known as a glove box button cells are assembled in an oxygen-free environment.

In the coming years he wants to use his enthusiasm and experience to get the most out of lithium-ion batteries with SGL Carbon’s various grades of special graphite. Wurm fishes something out of a drawer in the laboratory that looks like a folded survival blanket. “This is what the completed battery cell looks like,” he explains. There’s an anode consisting of a copper foil coated with graphite, binder and conductive additives; a cathode made of an aluminum foil coated with lithium metal oxide, binder and conductive additives; and a separator between them. The components are surrounded by a casing and impregnated with an electrolyte.

“It sounds simple, but it’s incredibly complex,” Wurm says. Depending on the application, the cells are either coiled or stacked. The casing may be a hard enclosure or a flexible composite material such as special foils for pouch cells. There are various electrolytes with differing conductive salts and solvents. Even the manufacturing method used for the copper foils affects the final product.

Wurm knows from his own experience that the countless interactions pose an enormous challenge for lithium-ion battery manufacturers. When he used to build batteries himself, using graphite, he repeatedly witnessed how the material in different battery types often had different performance parameters and lifetimes in practice. As he knows all too well: “Not all graphite is created equal. The art is knowing in advance which graphite is the best fit for the special cell design.”

Investment in Graphite Research
It is precisely for this reason that SGL intends to begin offering comprehensive services in the application laboratory. Instead of having one, two or three standard materials in its repertoire, SGL Carbon is starting to focus more on customized battery graphite products for the future. “We want to be able to sell our customers exactly what they need,” Wurm says. “Our advantage is that we know exactly how to produce a particular type of graphite and what its properties are. Now the idea is to utilize this knowledge even more effectively for designing batteries.”

This expertise has even more benefits. Battery manufacturers often test their suppliers’ materials in their own laboratories, which is an expensive, complicated and time-consuming process. “We can carry out such tests much more effectively, accurately and quickly for the customer using our accumulated expertise and knowledge,” Wurm says.

The strategy for the new battery laboratory perfectly implements the new SGL approach: “Customer orientation is even more important in our graphite anode business these days,” says Vice President Product Segment Battery Solutions Dr. Peter Roscher. “We are continually evolving from a materials supplier to a solutions provider in this area, as well.”

SGL Carbon has already made additional investments in order to successfully follow this path. Graphite production facilities in Poland and the Unit-
ed States have been upgraded, and the laboratory in Meitingen is being expanded, where Wurm will also be adding needed personnel for the new facility, together with their colleagues in sales and production, everyone is now working on the common vision.

In one of the laboratory rooms that are crucial to making this vision a reality, hundreds of lights are blinking. Dozens of cables snake their way through the room, and a wide screen displays a rising curve. In what are known as battery testers, hundreds of prototypes are transferred from the laboratory to the test station. This is the only way to produce statistically valid results. Wurm enters the room and quickly closes the door behind him. “If the temperature changes in here, it distorts our findings,” he explains. Lithium-ion batteries are sensitive components. A couple of degrees of warmth shouldn’t disturb the battery revolution in Meitingen.
Lithium ion batteries function according to a simple principle: when charging, lithium ions migrate from their “home,” the lithium metal oxide-based cathode, to their “vacation home,” the graphite-based anode. When the battery is discharged, they move back again and release energy. The electrolyte is the “street” the ions are traveling on. But why do the ions migrate? The voltage applied creates an excess of electrons at the anode, which attracts the positively charged lithium ions. As soon as they arrive at the anode, they take up the excess electrons, thereby bringing about a new equilibrium. During discharge the anode releases electrons, which then flow to the cathode via the outer circuit. This releases the energy again.

Lithium is the material of choice for batteries because it’s the lightest metal on the Periodic Table—weighing about half as much as water. Furthermore, because of its high electrode potential. This allows the cell voltage to be maximized while minimizing the battery’s weight.

The individual components of the lithium ion battery have been continually improved over the years. These improvements include a significant increase to the batteries’ capacity. While the first commercial column-shaped battery type (technically called “18650” due to its dimensions) had a capacity of 1,200 mAh at the beginning of the nineties, the same battery now has a capacity of 3,400 mAh. In the Tesla Model S 100, for example, a total of 8,256 such batteries enable a range of 450 to 500 km.

Whether an electric car, smartphone or laptop: lithium-ion batteries are usually what supplies us with power. In order to get the maximum performance out of every battery, SGL Carbon researches how all the components interact—and offers high-quality and precisely customized graphite anode materials for every field of application.

Layers that Power the World

Electrolyte
The battery cell is filled with an electrolyte. It is made up of a conductive salt and various organic solvents. Any change in the electrolyte formulation affects all of the battery’s other components. In addition, a high quality battery has as little water as possible remaining in the electrolyte.

Cathode
The cathode consists of a wafer-thin layer of lithium metal oxide with conductive additives and a binder (a type of adhesive), which is coated onto an aluminum foil. The more uniform and optimized chemical composition and mechanical properties of the electrode, the higher the quality of the battery.

Anode
Graphite is the perfect material for the anode. It is coated onto a copper foil together with binder and usually also with conductive additives, forcing the lithium atoms to find a fixed place in the material’s lattice structure. This has the following advantages: higher cycle stability, better performance during rapid charging and higher quality consistency compared to other battery types (such as lead-acid batteries). The purer the graphite, the better this mechanism works. Synthetic graphite, however, is particularly well thanks to its optimized and customizable properties. SGL Carbon’s many years of experience in production ensure the consistent quality of the graphite.

Separator
The cathode and anode are separated from one another by a separator, which prevents a short circuit. Yet it must also be as permeable as possible so that the tiny lithium ions can migrate between the anode and cathode when charging and discharging. The separator is usually made of a synthetic compound.
Carbon fibers are particularly well suited for making lightweight components. In the automotive and aerospace industries, they help to reduce weight and thus fuel consumption, meaning less CO₂ is produced. Dr. Osrwin Öttinger and his team are convinced that much more can be accomplished with the fiber. It could sooner or later also help solve other pressing problems of our time.

Ordinary but

Science Fiction that Works

Up until now, seawater has generally been desalinated using a process known as reverse osmosis. Massive pressure forces the salty water through a membrane between two tanks. The membrane prevents the salty constituents in the water from passing through, meaning that the water collected in the tank on the other side is pure. The disadvantage: the pressure requires energy. Currently, about three kilowatt-hours of energy are needed to desalinate one thousand liters of seawater.

“With new desalination cells using carbon fibers, we are already starting one step earlier in the process,” Öttinger says. Technically speaking, the new process uses the principle of electrodialysis. Two differently polarized electrodes extract the majority of the sodium and chloride ions from the seawater. These ions migrate through two membranes into two separate chambers and cannot go back to the original chamber. Largely salt-free water remains in the middle chamber, which is then desalinated through reverse osmosis, requiring considerably less energy.

However, these electrodes also require an external source of electricity. At least that used to be the case. Now bacteria are producing the energy required in the new desalination cell. What sounds like science fiction actually works. As the bacteria feed on wastewater, they produce electricity. Yet the bacteria don’t like electrodes made of metal. “That’s why we use carbon electrodes in the new desalination cell,” Öttinger explains. The extremely thin carbon fibers provide a support structure for the bacteria, and the electricity they produce is conducted through the carbon fibers.

“This innovation completely changes desalination: the energy generated from the wastewater makes it possible to produce drinking water from seawater at a very low cost,” says Frank Rogalla, project coordinator and head of research and innovation at FCC Aquilla SA, a partner company in the project. It’s a fascinating solution that could help defuse looming conflicts over drinking water throughout the world and, what’s more, help poorer countries in the process. Along the way, however, many aspects of this approach still need additional research. For example, it remains unclear which bacteria work best with which type of wastewater.

To keep the bacteria as comfortable as possible, the SGL team and other project partners are working on different approaches. Could it help the bacteria, for instance, to apply electrical voltage to the water during the colonization phase? Or do the tiny energy producers need a specific temperature? Öttinger and his team are mainly optimizing the carbon fibers to offer the bacteria the perfect surface to settle on. “But it may take some time before we have cleared the biggest hurdles,” Öttinger says.

You Just Have to Keep at It

Yet even if it takes several years before the first industrial plants with carbon-fiber desalination cells go into operation, they prove to Öttinger something much more fundamental: the enormous potential of the fibers. “If someone had told me five years ago that we would be putting carbon fibers into seawater, I probably would have just shaken my head in disbelief,” he says. “And today our research is a great success.”

It’s clear to Öttinger and his team that the potential of carbon fibers is far from being exhausted. “Time and again, basic research brings amazing opportunities to light;” he says, and then brings up a bit of history. The carbon fiber of today was patented almost sixty years ago—and now the first commercial-scale applications are ready to go into production. When Öttinger looks at his current research in light of this time frame, one thing becomes clear: “Today we’re definitely laying the foundation for some interesting new applications in the future. You just have to keep at it.”
In-house training centers, a kick-off week, almost 100 percent hiring rate: **good training** is a tradition at SGL Carbon. It’s no surprise that the firm is one of Germany’s best companies for apprenticeships. Five apprentices tell us why.

Daniel Delil Gül, 21, industrial technician apprentice in Bonn

I came to SGL through my cousin. He did his training here eleven years ago and is still with the company, so I knew that I would get a great education at SGL Carbon. Now I’m starting my third year of training and have never regretted my decision. We are just learning how to wire circuits. First it was simple things like electrical sockets or light bulbs. Meanwhile I can control an electric motor with what is known as a star-delta circuit. If you’re interested and motivated, you can learn a lot at SGL. And you can always count on the instructors to support you. If something goes wrong, it’s not the end of the world. You have to face up to your mistakes and then learn from them. It’s the only way to move ahead.

Nicole Lindenmeier, 18, chemical laboratory apprentice in Meitingen

I actually wanted to become a vet, but didn’t like seeing sick animals every day. The Girl’s Day Academy led me to SGL. After an internship, I applied online and was then invited for an interview after a recruitment test. Although I was pretty nervous during the interview, I felt like I was in good hands. That was also the deciding factor in my decision to join SGL. My coworkers are great and support me wherever they can. We also get enough time to prepare for vocational college and the exams there. After my training, I want to gain more professional experience at SGL and maybe later become a certified master or technician.

SGL. And you can always count on the instructors to support you. If something goes wrong, it’s not the end of the world. You have to face up to your mistakes and then learn from them. It’s the only way to move ahead.
Rebecca Theresa Heimerl, 20, dual-track student in controlling and consulting in Meitingen

SGL is a global company—and that’s exactly why I wanted to get a trainee position here. The idea of being part of such a large company fascinates me just as much as the untold number of applications for carbon and graphite. I’m lucky it worked out. After just a few days with the company, I already had the feeling that I fully belonged here. My coworkers were open about integrating me into the team and took a lot of time to familiarize me with the job. I then spent a few weeks gaining practical experience and then started studying at DHBW Vil-lingen-Schwenningen [vocational college] at the same time. The mixture of on-the-job practice and classroom theory is ideal for me and will hopefully build a foundation for many more years at SGL Carbon.

Markus Lang, 18, industrial technician in Meitingen

Right now I’m working four-to-five-week stints in different departments and learning a lot about the specific processes there. After that I hope to be hired by one of the departments. The variety was what I always liked best during my training. I was constantly learning new things and meeting new people. The coolest thing was our training trip and the socio-education-al seminar in Grainau, where we learned presentation techniques. I also learned something from my instructors that will help me all my life: always keep a cool head, even if everything isn’t working out.

Philipp Dohmen, 22, machine and plant operator apprentice in Bonn

I’m still at the beginning of my training and during the first year I learned the basic techniques such as filing, drilling, lathing and milling. That was exciting because we were given different tasks every day and were constantly learning new things. When things get more difficult, the instructors each supported us individually. This also taught me how to get a grip on my anxiety about exams and to plan my work processes better. I now want to fully focus on my training and hope to be hired afterwards. Even so, it isn’t always about the work. On our training trip, for instance, we took a spontaneous detour to a go-kart racing track.
The ancient alchemists treasured what they called spirits of salt—what we know today as hydrochloric acid—using it to search for the philosopher’s stone. Today this all-rounder is an important basic chemical for modern chemistry. SGL Carbon has been building complete plants for manufacturing hydrochloric acid for more than fifty years and relies on the jack-of-all-trades graphite: it dissipates heat, doesn’t corrode and is indispensable for hydrochloric acid production.

Basic Material for Chemistry: Hydrochloric acid helps bleach the paper that we write on, makes water purification possible and looses layers of rock in mining. It is used in the production of silicon for solar cells, LEDs and microchips. Even the manufacture of plants and varnishes would hardly be possible without it.

Hot Stuff: In the combustion chamber, hydrogen and chlorine react at temperatures of up to 2,500 degrees Celsius to form hydrogen chloride, with the chemical formula HCl. The DIABON graphite inside the steel cylinder effectively dissipates the heat to the coolant. The material is also particularly chemically resistant, which is a good thing; otherwise, due to its corrosive properties, the hydrochloric acid would attack the materials in the plant.

Size Matters: The size of the combustion chamber determines the maximum production capacity. The graphite cylinders vary in diameter from 25 centimeters to almost 150 centimeters. This translates into enough for 5 to 160 tons of 100-percent hydrogen chloride per day.

Steam Generator: The HCl synthesis continually generates waste heat. This can be used to produce steam at temperatures of up to 160 degrees Celsius that can be used in many chemical plants at different places. Depending on the design of the chemical park, the utilization of this waste heat can be a positive side benefit of hydrochloric acid production, helping to save energy and thus reduces CO2 emissions.

Tradition for Customers Worldwide: SGL Carbon can look back on more than fifty years of experience in designing and manufacturing HCl synthesis plants. To date the company has supplied more than 500 of these up to 25-meter-tall facilities all over the world, from North and South America, through all of Europe, Australia and Russia, and on to China, India, Japan and Indonesia. The customer base runs the gamut from plant manufacturers to chemistry giants such as Dow Chemical Company and BASF. The oldest plant has been in operation since 1968.

Global Market, Global Production: HCl synthesis plants are built in Meitingen, Germany, as well as in Strongsville, Ohio in the United States, in Pune, India, and in Shanghai, China. Thanks to completely factory-preassembled modules, the so-called skids, the systems can quickly be up and running all over the world.
A Journey by Pneumatic Tube

The Hyperloop could revolutionize rail transport. What was once an option for urgent mailings is now being developed to potentially transport people and goods in future at almost the speed of sound—capsules could be whizzed through vacuum tubes at speeds of around 1,200 kilometers per hour. The most successful prototype to date was developed with carbon fiber materials from SGL Carbon.

Riding a train at the speed of sound: the Hyperloop is an idea from Tesla founder Elon Musk. It’s based on the concept of pneumatic tubes, like the old-style mailing system. High-speed trains will be transported at extreme speeds through a tube filled with a partial vacuum, an idea that has long since stopped being science fiction. Students at the Technical University of Munich (TUM) have already sent their test model of the so-called “pod”—that is to say, the prototype of the possible later cabin capsule—racing at 467 kilometers per hour through the experimental tube on the premises of SpaceX, Musk’s space company, in Los Angeles.

The TUM team used carbon fibers from SGL Carbon for the prototypes. Along with supplying the carbon fiber materials, the company also provided the students of the Scientific Workgroup for Rocket Technology and Spaceflight (WARR) at TUM with the expertise, resources and equipment.

This newest speed record marks the third time in a row the WARR team has won the “Hyperloop Pod Competition” launched by Elon Musk; some thirty student workgroups from all over the world take part. While the first competition was about an overall working concept for a Hyperloop Pod, the main focus of the second competition was on the speed achieved, with the Munich team victorious at 324 kilometers per hour.

The third competition was once again about the maximum speed, but this time only pods with their own propulsion systems were allowed to compete. Only three teams made it into the finals, including the TUM team. Although the winning speed of 467 kilometers per hour is still a good way off from the speed of sound (1234.8 kilometers per hour), the dream of a train ride from Munich to Berlin within 35 minutes is coming nearer. The Hyperloop makes use of the pneumatic tube principle developed in the nineteenth century: once the train has initially accelerated, the vacuum inside the tube means that almost no more energy is required for it to reach its destination. If this innovative means of transport can be realized in an economically viable manner, it would be faster and more environmental-friendly than air travel and simultaneously cheaper than rail.

Head of Industrial Applications & Marketing for Composites – Fibers & Materials (CFM) at SGL Carbon Dennis Baumann, is excited about the development of the Hyperloop: “The Hyperloop pod is an up-and-coming project with global significance and great potential in the field of future-oriented mobility. That’s why we are very happy to support the students with our expertise and our materials. Much like in our customer projects, the focus with the young university team is on working together as partners and developing integrated solutions.” SGL also works closely with TUM on more than just the Hyperloop project. For more than eight years the company has been supporting the Carbon Composites endowed professorship (LCC), which is focused on the integrated study and advancement of fiber-reinforced composites and their applications.